Building on ten years of research, the team, consisting of scientists from Rice University, Dutch firm Teijin Aramid, the Air Force Research Laboratory (AFRL) and the Technion-Israel Institute of Technology, relied on a “wet-spinning” chemical process using chlorosulfonic acid to dissolve clumps of raw nanotubes in a liquid before they were squirted through tiny holes to form long strands. These strands, with trillions and trillions of tightly packed carbon nanotubes all aligned in the same direction, were then spun into a macroscopic thread the researchers say boasts the highest conductivity ever reported for a macroscopic CNT fiber.
Wednesday, January 16, 2013
Threadlike carbon nanotube fiber combines strength, flexibility and conductivity
At about 100 times the strength of steel at one sixth the weight and
with impressive electrical conductive properties, carbon nanotubes
(CNTs) have promised much since their discovery in 1991. The problem has
been translating their impressive nanoscale properties into real-world
applications on the macro scale. Researchers have now unveiled a new CNT
fiber that conducts heat and electricity like a metal wire, is very
strong like carbon fiber, and is flexible like a textile thread.
Building on ten years of research, the team, consisting of scientists from Rice University, Dutch firm Teijin Aramid, the Air Force Research Laboratory (AFRL) and the Technion-Israel Institute of Technology, relied on a “wet-spinning” chemical process using chlorosulfonic acid to dissolve clumps of raw nanotubes in a liquid before they were squirted through tiny holes to form long strands. These strands, with trillions and trillions of tightly packed carbon nanotubes all aligned in the same direction, were then spun into a macroscopic thread the researchers say boasts the highest conductivity ever reported for a macroscopic CNT fiber.
Building on ten years of research, the team, consisting of scientists from Rice University, Dutch firm Teijin Aramid, the Air Force Research Laboratory (AFRL) and the Technion-Israel Institute of Technology, relied on a “wet-spinning” chemical process using chlorosulfonic acid to dissolve clumps of raw nanotubes in a liquid before they were squirted through tiny holes to form long strands. These strands, with trillions and trillions of tightly packed carbon nanotubes all aligned in the same direction, were then spun into a macroscopic thread the researchers say boasts the highest conductivity ever reported for a macroscopic CNT fiber.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment